Detecting Selection Using Time-Series Data of Allele Frequencies with Multiple Independent Reference Loci
نویسنده
چکیده
Recently, in 2013 Feder et al. proposed the frequency increment test (FIT), which evaluates natural selection at a single diallelic locus by the use of time-series data of allele frequencies. This test is unbiased under conditions of constant population size and no sampling noise. Here, we expand upon the FIT by introducing a test that explicitly allows for changes in population size by using information from independent reference loci. Various demographic models suggest that our proposed test is unbiased irrespective of fluctuations in population size when sampling noise can be ignored and that it has greater power to detect selection than the FIT if sufficient reference loci are used.
منابع مشابه
Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease.
Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here...
متن کاملDetecting Long-Term Balancing Selection Using Allele Frequency Correlation
Balancing selection occurs when multiple alleles are maintained in a population, which can result in their preservation over long evolutionary time periods. A characteristic signature of this long-term balancing selection is an excess number of intermediate frequency polymorphisms near the balanced variant. However, the expected distribution of allele frequencies at these loci has not been exte...
متن کاملمقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملIdentifying signatures of selection in genetic time series.
Both genetic drift and natural selection cause the frequencies of alleles in a population to vary over time. Discriminating between these two evolutionary forces, based on a time series of samples from a population, remains an outstanding problem with increasing relevance to modern data sets. Even in the idealized situation when the sampled locus is independent of all other loci, this problem i...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کامل